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Stabilization of the motions of mechanical systems
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Abstract

A method for constructing a mathematical model of the dynamics of a mechanical system is proposed. An algorithm is constructed
for determining the expressions for the control forces and the components of the constraint reactions. A modification is made to the
dynamic equations which enables one to solve the problem of stabilizing the constraints and which ensures the required accuracy
in the numerical solution of the corresponding system of differential-algebraic equations describing the constraints imposed on the
system, its kinematics and dynamics. By virtue of well-known dynamic analogies, the proposed method can be used to investigate
the dynamics of different physical systems. The problem of modelling the dynamics of an adaptive optical system with two degrees
of freedom is considered.
© 2006 Elsevier Ltd. All rights reserved.

1. Introduction

The dynamic equations of a mechanical system can be constructed if we know its kinetic energy T 0 = T 0(qi, q̇j),
q̇� dq/dt (i, j = 1, 2, . . . , n), potential energy P0 = P0(qi, t), dissipative function D0 = D0(qi, q̇j, t), the elementary
work of the generalized non-potential forces Qs = Qs(qi, q̇j, t) and the control forces Rs = Rs(qi, q̇j, t) (s = 1, 2, . . ., n).

(1.1)

In equality (1.1) and henceforth, summation over repeated indices is assumed. Using well-known dynamical
analogies,1,2 the corresponding reasoning can also be used for physical systems. The control forces Rs acting on the
system are called upon to ensure that the constraint equations

(1.2)

which are imposed on the generalized coordinates qi and velocities q̇j of the system are satisfied. The left-hand sides
of Eq. (1.2) are differentiable with respect to all the variables.
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The well-known classical methods for constructing the dynamic equations are based on the assumption that the
constraint equations are satisfied when t = t0

(1.3)

and for all t > t0. If, however, the initial conditions (the last two equalities of (1.3)) turn out to be such that

then the numerical solution of the differential-algebraic equations composed of the kinematic equations, the dynamic
equations and the constraint equations turns out to be unstable, and the deviation from the constraint equations increases
with time. In order to stabilize the constraints (1.2), it is necessary to take account of the deviation from Eq. (1.2)
and to introduce a corresponding correction into the right-hand sides of the dynamic equations of the system.3,4 In
recent years, the problem of stabilizing the constraints and constructing stable difference schemes for solving the
differential-algebraic equations has become an urgent problem in modelling the dynamics of mechanical systems.5,6

A method of constructing a mathematical model of the dynamics is proposed below and an algorithm for determining
the reactions of the constraints Rs, which ensure that the constraint Eq. (1.2) are satisfied, is constructed. A modification
is made to the dynamic equations which enables the problem of stabilizing the constraints to be solved and ensures the
required accuracy in the numerical solution of the system of differential-algebraic equations describing the constraints
imposed on the system, its kinematics and dynamics.

2. Construction of the dynamic equations

Additional parameters, the excess variables yµ, ẏµ, ẏρ, which are henceforth labelled using letters from the Greek
alphabet, are introduced into the treatment in order to estimate the deviations from the constraint equations (1.2) by
means of the equalities

(2.1)

Taking account of these new variables, the kinematic state of the system corresponding to the mathematical model
will be determined by the generalized coordinates qi, y� and the generalized velocities q̇i, ẏκ (� = 1, . . ., r). The
kinetic energy, potential energy and dissipative function will also contain the excess coordinates yµ and velocities ẏκ:
T = T (qi, yµ, q̇j, ẏκ), P = P(qi, y�, t) D = D(qi, yµ, q̇j, ẏκ, t). It is assumed that the functions T, P and D are at least
doubly differentiable with respect to all of the variables and that the conditions

are satisfied when

(2.2)
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If the values of the variables yµ and ẏκ are sufficiently small: ||z|| ≤ ε, z = (yµ, ẏκ), then, on putting

(2.3)

the functions T, P and D can be represented by an expansion in series in the powers of yµ and ẏκ:

(2.4)

(2.5)

(2.6)

Here, T(3), P(3), D(3) are the corresponding terms which contain the factors of yµ and ẏκ to powers of no less than three.
It is assumed that the coefficients mij, a��, k��, c�� and all of their partial derivatives are bounded in the domain � of
the change of variables qs, q̇j and for all t ≥ t0. The forces Rs correspond to the coordinates qs and are considered as
control forces which ensure that the equalities (2.1) are satisfied.

The d’Alembert - Lagrange principle

(2.7)

can be used for the construction of the system of differential equations which corresponds to the expressions (2.4)–(2.6)
which have been adopted for the functions T, P and D.

If the variations in the excess variables �y� are determined from the last two equations of (2.2) according to the rule

(2.8)

then the possible displacements �qi of the system must be determined by the solution of the system of r linear algebraic
equations (2.8) in the n unknowns.

The general solution of system (2.8) consists of two terms:

(2.9)

The first term corresponds to a direction which is tangential to the manifold � in phase space, defined by Eq. (2.1) in
the case of fixed values of the variables y� and ẏρ. The quantity vi is the corresponding component of the vector product
v = [FC] of a row of the matrix F = (fκ

i ), f κ
i � ∂̇if

ρ and a row of an arbitrary matrix C = (cβ
j ) (β = r + 2, . . . , n),

and �s is an arbitrarily small quantity. The component vi is calculated as the determinant of the matrix formed by the
unit vector (δi

1, . . . , δ
i
n), (δi

j = 0, i �= j, δi
i = 1) and the rows of the matrices F and C. The second term corresponds to

a direction which is normal to the manifold �. The coefficients f (+)i
κ constitute the matrix F+ = FT(FFT)−1, where FT

is the transpose of the matrix F.
The magnitude of the elementary work of the generalized control forces, when account is taken of expression (2.9)

for the virtual displacements of the system, is given by the sum

(2.10)

If the control forces Ri are chosen from the set of functions satisfying the equality

(2.11)



R.G. Mukharlyamov / Journal of Applied Mathematics and Mechanics 70 (2006) 210–222 213

then expression (2.10) takes the form

(2.12)

Actually, in this case, Riv
i is the scalar (composite) product {RFC}= RT[FC] of the vector R and the vectors constituting

the rows of the matrices F and C. The quantity {RFC} is calculated as the determinant which is obtained by replacing
the first row of the determinant vi by the components R1, . . ., Rn of the vector R. If equality (2.11) is possible for any
matrix C, then the first r + 1 rows of the determinant {RFC} must be linearly dependent. This means that the vector
R = FT� is a linear combination of the row of the matrix F with arbitrary coefficients λ1, . . . , λr : Ri = fκ

i λκ. This
representation of the vector R of the control forces when yµ = 0, ẏκ = 0 corresponds to the reaction of ideal constraints
in classical mechanics.

Taking equalities (2.9) and (2.12) into account, the expression for the d’Alembert - Lagrange principle (2.7) takes
the form

(2.13)

As a consequence of the independence of the variations �s and �yκ, condition (2.13) in only satisfied when the following
equalities hold

(2.14)

Since the first equality of (2.14) is analogous to condition (2.11), such sets λ∗
κ exist for which the following equality

is satisfied

(2.15)

Using relations (2.15) and fκ
i f (+)i

η = δκ
η, it can be concluded from the second equality of (2.14) that λ∗

κ = λκ and

(2.16)

Taking account of the notation adopted, equalities (2.15) and (2.16) can be represented in the form of a system of
Lagrange equations

(2.17)

The system of differential-algebraic Eqs. (2.1), (2.17) enables us to determine the unknowns qi, q̇j, yµ, ẏκ, λκ. The
solution of this system reduces to the expression of the coefficients �� and the excess variables y� and ẏκ in terms
of the generalized coordinates and velocities qi, q̇j and integration of the first system of Eq. (2.17) in the case of the
specified initial conditions (1.3).

The expressions for �� are determined if Eq. (2.17) are represented in a form which is resolved with reference to q̈i

and ÿκ. Taking account of expressions (2.4)–(2.6), we can write system (2.17) in the form

(2.18)
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where

Denoting the matrices which are the inverses of (mis) and a�� by (mki) and (a��) (� = 1, . . ., r) respectively, the system
of Eq. (2.18) can be represented in a form which is resolved with reference to the higher derivatives:

(2.19)

(2.20)

Here,

(2.21)

3. Determination of the control actions

Expressions for the generalized control forces were constructed in the form Ri = ∂if��� in Section 2. Equalities (2.1)
have to be differentiated in order to determine the coefficients ��, and we obtain

(3.1)

Substituting the values of the generalized accelerations q̈k and ÿκ from (2.19) and (2.20) into equality (3.1) we obtain
a system of linear algebraic equations for determining the Lagrange multipliers ��

(3.2)
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The solution of system (3.2) can be represented in the form of a sum of three terms, distributed in powers of the
variables y� and ẏκ:

With this choice of the coefficients ��, which are distributed in powers of the variables y� and ẏκ, equalities (1.2) are
satisfied along the solutions qk = qk(t) of the differential dynamic equations of the system

(3.3)

provided that they were satisfied for the initial conditions (1.3).

4. Stability

A necessary condition for the constraints (1.2) to be stable is the asymptotic stability of the corresponding integral
manifold of system (3.3). We will represent Eqs. (3.3) and (2.20) in the form of systems of first-order differential
equations in the variables qi, q′j and yµ, y′κ

(4.1)

(4.2)

(4.3)

By virtue of equalities (4.3), the stability of the integral manifold (1.2) in the new variables can be treated as stability
with respect to a part of the variables7 of the system of equations (4.1) and (4.2). If, in the space of the variables qi and
q′j, the distance up to the integral manifold (1.2) is determined by the quantity

then the stability of the manifold (1.2) can be judged from the stability properties of the trivial solution y� = 0, y′� = 0
of system (4.2). The method of Lyapunov functions8 can be used to investigate the stability of the trivial solution. If
the function V = V (qs, q′j, yµ, y′κ, t), V (qs, q′j, 0, 0, t) = 0 is positive definite with respect to the variables yµ and
y′κ, that is V (qs, q′j, yµ, y′κ, t) > 0 when yµδµνy

ν + y′κδκνy
′ν > 0, t ≥ t0, and its derivative

calculated on the basis of Eqs. (4.1) and (4.2), is a negative definite function, and the functions V, yµ and y′κ allow of
an infinitesimal upper limit,8 then the integral manifold (1.2) of system (4.1) is asymptotically stable.

The positive definite quadratic form in the variables yµ and y′κ

(4.4)

can be used as the Lyapunov function.
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The coefficients u��, vµκ and wκη of the form (4.4) are assumed to be continuous, differentiable, bounded functions
of the variables qi, q′j and t over the whole domain of their variation

The derivative of the function (4.4) reduces to the form

(4.5)

(4.6)

(4.7)

(4.8)

(4.9)

In the case when

the equality V̇ (3) = 0 is satisfied as a consequence of relations (2.21) and (4.9), and expressions (4.6)–(4.8) take the
form

If, in expressions (2.4)–(2.6) for T, P and D, the coefficients mij, a��, k�� and c�� are constant and T(3) = 0, P(3) = 0,
D(3) = 0, then Y�(2) = 0 and system (4.2) consists of linear differential equations with constant coefficients. In this case,
the stability of its trivial solution can be judged from the roots of the characteristic equation det(µ2δκ − µb

η
κ − k

η
κ) = 0

5. Numerical solution

For all t > t0, the solution of the dynamic equations of system (4.1) satisfies the equalities

(5.1)

if these equalities are satisfied when t = t0. Stabilization of the constraints (5.1) during the numerical solution of system
(4.1) can be achieved by an appropriate choice of the coefficients bκ

η and kκ
µ on the right-hand sides of the equations

for the perturbations of the constraints (4.2). The conditions which are sufficient for stabilizing the constraints (5.1)
are determined constructing a difference equation which is used for its solution.

Suppose
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If, when t = t0 + �s, the function

is used to estimate the deviation of the solutions of system (4.1) from the manifold specified by the constraint Eq. (5.1),
the quantity V(s+1) can be defined by the expansion in series

(5.2)

where V(2)(s) is the set of terms no lower than the second order in the variables ∆qi(s), ∆q′j(s), ∆yµ(s), ∆y′κ(s) and
�. The increments 
yµ(s) and 
y′κ(s) are defined by the equalities

(5.3)

Taking relations (4.1), (4.2) and (5.3) into account, expression (5.2) reduces to the form

(5.4)

On estimating the right-hand side of equality (5.4), it is possible to formulate the following assertions.

Theorem 1. If the initial values of q0
i and q′j

0 satisfy the condition

(5.5)

and the restrictions

are satisfied for all s = 0, 1, . . ., S, then the inequality

(5.6)

will hold for all s = 1, . . ., S.
The proof of the theorem follows immediately from relations (5.4)–(5.6). Actually, if, in satisfying the conditions of

the theorem, inequality (5.6) holds for a certain value of s, then

Theorem 2. If the initial values satisfy condition (5.5) and the restrictions

(5.7)

are satisfied for all s = 0, 1, . . ., S, then inequality (5.6) will be satisfied for any s = 1, . . ., S.
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In fact, if condition (5.6) is true for a certain value of s, it follows from relations (5.4) and (5.7) that

Theorem 3. If the function V = V (qi, q′j, yµ, y′κ, t) and its derivative V̇ , calculated using the system of equations
(4.1), (4.2), satisfies the conditions

and the restrictions

are satisfied, then inequality (5.6) will be satisfied for any s = 1, 2, . . ., S.
Actually, in this case,

and the inequalities

mean that V (s) ≤ V (0). Consequently,

If the values of the Lyapunov function and its derivative of the form of (4.4), (4.5)

where

are used as V (s), then the conditions for stabilizing the constraints are given by the following theorem.

Theorem 4. If the initial values satisfy condition (5.5), Ṽ (s) ≤ (1 − α)l1ε2 and the restrictions

are satisfied for all s = 0, 1, . . ., S, then inequality (5.6) will be satisfied for any s = 1, 2, . . ., S.
The proof of Theorem 4 also follows directly from the chain of inequalities

In the case when g	
 = const,
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Fig. 1.

the expression g̃χζ takes the form

and the following assertion is found to hold.

Theorem 5. If the initial values qi
0 and q′j

0 satisfy condition (5.5), z(0) = z0, Ṽ (s) ≤ (1 − α)l1ε2, and the restrictions

are satisfied for all s = 0, 1, . . ., S, then inequality (5.6) will be satisfied for any s = 1, 2, . . ., S.
In fact, suppose condition (5.6) holds for a certain value of s. Then,

6. Example. Control of an element of an adaptive optical system

An element of a discrete adaptive optical system9 can be constructed with a mechanism consisting of a weightless
crank OA which rotates about the Ox3 axis and a slider B which is attached to it (Fig. 1). The position of the slider B
is defined by the polar coordinates q1 = r, q2 = �. The point P*(x1, x2): x1 = x1(t), x2 = x2(t), from which a ray of light
emerges and is directed onto a mirror attached to the surface of the slider B, moves in the Qx1x2 plane. It is required
to determine the magnitude F of the reaction F of the constraint

(6.1)

and the expression for the moment M applied to the crank for which the ray reflected from the mirror is incident at a
fixed point C(c, 0) of the Ox1x2 plane. The aim of the control is determined by the constraint equation

(6.2)

where x(t) is the value of the coordinate of the point P of the intersection of the line BP* with the Ox1 axis.
The slider B is treated as a point mass on which a gravitational force mg, in the opposite direction to the Ox2 axis,

acts. The excess variables y1, y2, ẏ1 and ẏ2 are defined by the relations

(6.3)

(6.4)
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In the case of the system considered

Putting

the dynamic equations, corresponding to the mathematical model, can be represented by the system of differential
equations

(6.5)

(6.6)

The expressions for the magnitude of the reactive force and the control moment on the right-hand sides of Eq. (6.5)
are given by the equalities

(6.7)

If

it follows from equality (6.3) and the first equation of (6.6) that y1(t) 0 and r(t) = R. It then follows from Eq. (6.5) and
the first equality of (6.7) that

and the second equation of (6.6) takes the form

(6.8)

It remains to determine the multiplier �2. To do this, it suffices to differentiate the second equation of (6.4), taking
account of the second equation of (6.6), Eqs. (6.8) and expressions (6.3) and (6.4). We have

(6.9)

Substituting expression (6.9) into Eq. (6.8) we obtain an equation in �

(6.10)

If the initial conditions �(0) = �0 and ϕ̇0(0) = ϕ̇0 are chosen such that
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then the function

(6.11)

keeps the constant value y = 0 in the corresponding solution of Eq. (6.10). It follows from the second equation of (6.6)
that its trivial solution y = 0 is asymptotically stable if b > 0 and k > 0. It remains to determine the magnitude of the
coefficients b and k in order to ensure stabilization of the constraint (6.2) during the numerical solution of Eq. (6.10).

A numerical experiment was carried out using the following data

Suppose that, when t = �s, the deviations of the solutions of Eq. (6.10) from the manifold prescribed by the constraint
Eq. (6.2) are estimated by the quantity

If the function

is used as an estimate for ||z(s)||, then l1 = 1 and l2 = 5, and the equality V̇ (s) = −pV (s) is satisfied when p = b = −4/3,
k = −1.

We now expand the functions V(s + 1) in series

Then,

(6.12)

It follows from expression (6.15) that the inequality V(s + 1) ≤ V(s) is satisfied if 0 ≤ α ≤ pτ ≤ 1, Ṽ (s) ≤ αl1||z0||2.
By putting Ṽ (s) = (τ2/2)W(s) and taking only second-order terms in � into account in expression (6.15), the estimate

W(s) ≤ 225 can be obtained. Calculations carried out in accordance with Theorem 3 yield the following conditions for
choosing the magnitude of �

Fig. 2.
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The condition �1 <� <�2 is satisfied if 0 < � ≤ 2.682 × 10−5, and �1 = 0.1999 × 10−5 and �2 = 0.6233 × 10−5 correspond
to the value � = 0.2665 × 10−5. The inequality ||z0|| ≤ ε

√
l1/l2 enables us to determine the restriction on the quantity


: 
 ≥ 9.213 × 10−2.
Graphs of the functions x = x(t), � = �(t) and ||z(t)|| =

√
y2(t) + ẏ2(t) for � = 2 × 10−3 are shown in Fig. 2.
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